Copied to
clipboard

G = C32⋊C32order 288 = 25·32

The semidirect product of C32 and C32 acting via C32/C4=C8

metabelian, soluble, monomial, A-group

Aliases: C32⋊C32, C4.2F9, (C3×C6).C16, C2.(C2.F9), (C3×C12).1C8, C324C8.C4, C322C16.1C2, SmallGroup(288,373)

Series: Derived Chief Lower central Upper central

C1C32 — C32⋊C32
C1C32C3×C6C3×C12C324C8C322C16 — C32⋊C32
C32 — C32⋊C32
C1C4

Generators and relations for C32⋊C32
 G = < a,b,c | a3=b3=c32=1, cac-1=ab=ba, cbc-1=a >

4C3
4C6
9C8
4C12
9C16
12C3⋊C8
9C32

Smallest permutation representation of C32⋊C32
On 96 points
Generators in S96
(2 79 55)(3 80 56)(4 57 81)(6 59 83)(7 60 84)(8 85 61)(10 87 63)(11 88 64)(12 33 89)(14 35 91)(15 36 92)(16 93 37)(18 95 39)(19 96 40)(20 41 65)(22 43 67)(23 44 68)(24 69 45)(26 71 47)(27 72 48)(28 49 73)(30 51 75)(31 52 76)(32 77 53)
(1 78 54)(3 80 56)(4 81 57)(5 58 82)(7 60 84)(8 61 85)(9 86 62)(11 88 64)(12 89 33)(13 34 90)(15 36 92)(16 37 93)(17 94 38)(19 96 40)(20 65 41)(21 42 66)(23 44 68)(24 45 69)(25 70 46)(27 72 48)(28 73 49)(29 50 74)(31 52 76)(32 53 77)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (2,79,55)(3,80,56)(4,57,81)(6,59,83)(7,60,84)(8,85,61)(10,87,63)(11,88,64)(12,33,89)(14,35,91)(15,36,92)(16,93,37)(18,95,39)(19,96,40)(20,41,65)(22,43,67)(23,44,68)(24,69,45)(26,71,47)(27,72,48)(28,49,73)(30,51,75)(31,52,76)(32,77,53), (1,78,54)(3,80,56)(4,81,57)(5,58,82)(7,60,84)(8,61,85)(9,86,62)(11,88,64)(12,89,33)(13,34,90)(15,36,92)(16,37,93)(17,94,38)(19,96,40)(20,65,41)(21,42,66)(23,44,68)(24,45,69)(25,70,46)(27,72,48)(28,73,49)(29,50,74)(31,52,76)(32,53,77), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)>;

G:=Group( (2,79,55)(3,80,56)(4,57,81)(6,59,83)(7,60,84)(8,85,61)(10,87,63)(11,88,64)(12,33,89)(14,35,91)(15,36,92)(16,93,37)(18,95,39)(19,96,40)(20,41,65)(22,43,67)(23,44,68)(24,69,45)(26,71,47)(27,72,48)(28,49,73)(30,51,75)(31,52,76)(32,77,53), (1,78,54)(3,80,56)(4,81,57)(5,58,82)(7,60,84)(8,61,85)(9,86,62)(11,88,64)(12,89,33)(13,34,90)(15,36,92)(16,37,93)(17,94,38)(19,96,40)(20,65,41)(21,42,66)(23,44,68)(24,45,69)(25,70,46)(27,72,48)(28,73,49)(29,50,74)(31,52,76)(32,53,77), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96) );

G=PermutationGroup([[(2,79,55),(3,80,56),(4,57,81),(6,59,83),(7,60,84),(8,85,61),(10,87,63),(11,88,64),(12,33,89),(14,35,91),(15,36,92),(16,93,37),(18,95,39),(19,96,40),(20,41,65),(22,43,67),(23,44,68),(24,69,45),(26,71,47),(27,72,48),(28,49,73),(30,51,75),(31,52,76),(32,77,53)], [(1,78,54),(3,80,56),(4,81,57),(5,58,82),(7,60,84),(8,61,85),(9,86,62),(11,88,64),(12,89,33),(13,34,90),(15,36,92),(16,37,93),(17,94,38),(19,96,40),(20,65,41),(21,42,66),(23,44,68),(24,45,69),(25,70,46),(27,72,48),(28,73,49),(29,50,74),(31,52,76),(32,53,77)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)]])

36 conjugacy classes

class 1  2  3 4A4B 6 8A8B8C8D12A12B16A···16H32A···32P
order1234468888121216···1632···32
size1181189999889···99···9

36 irreducible representations

dim111111888
type+++-
imageC1C2C4C8C16C32F9C2.F9C32⋊C32
kernelC32⋊C32C322C16C324C8C3×C12C3×C6C32C4C2C1
# reps1124816112

Matrix representation of C32⋊C32 in GL9(𝔽97)

100000000
010000000
001000000
0000960000
0001960000
0000240100
06442730969600
0621920009696
0000950010
,
100000000
0961000000
0960000000
0000960000
0001960000
07217730969600
08720241000
017790950010
017790950001
,
4600000000
0000096100
064427373959600
0000000961
0621922009596
0124868688072240
0124869688072240
0345311119679950
0274411119679950

G:=sub<GL(9,GF(97))| [1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,64,62,0,0,0,1,0,0,0,42,19,0,0,0,0,0,1,0,73,2,0,0,0,0,96,96,24,0,0,95,0,0,0,0,0,0,96,0,0,0,0,0,0,0,1,96,0,0,0,0,0,0,0,0,0,96,1,0,0,0,0,0,0,0,96,0],[1,0,0,0,0,0,0,0,0,0,96,96,0,0,72,8,17,17,0,1,0,0,0,17,72,79,79,0,0,0,0,1,73,0,0,0,0,0,0,96,96,0,24,95,95,0,0,0,0,0,96,1,0,0,0,0,0,0,0,96,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[46,0,0,0,0,0,0,0,0,0,0,64,0,62,12,12,34,27,0,0,42,0,19,48,48,53,44,0,0,73,0,2,68,69,11,11,0,0,73,0,2,68,68,11,11,0,96,95,0,0,80,80,96,96,0,1,96,0,0,72,72,79,79,0,0,0,96,95,24,24,95,95,0,0,0,1,96,0,0,0,0] >;

C32⋊C32 in GAP, Magma, Sage, TeX

C_3^2\rtimes C_{32}
% in TeX

G:=Group("C3^2:C32");
// GroupNames label

G:=SmallGroup(288,373);
// by ID

G=gap.SmallGroup(288,373);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,14,36,58,80,4037,4716,691,10982,6285,2372]);
// Polycyclic

G:=Group<a,b,c|a^3=b^3=c^32=1,c*a*c^-1=a*b=b*a,c*b*c^-1=a>;
// generators/relations

Export

Subgroup lattice of C32⋊C32 in TeX

׿
×
𝔽